227 research outputs found

    Temporal shape super-resolution by intra-frame motion encoding using high-fps structured light

    Full text link
    One of the solutions of depth imaging of moving scene is to project a static pattern on the object and use just a single image for reconstruction. However, if the motion of the object is too fast with respect to the exposure time of the image sensor, patterns on the captured image are blurred and reconstruction fails. In this paper, we impose multiple projection patterns into each single captured image to realize temporal super resolution of the depth image sequences. With our method, multiple patterns are projected onto the object with higher fps than possible with a camera. In this case, the observed pattern varies depending on the depth and motion of the object, so we can extract temporal information of the scene from each single image. The decoding process is realized using a learning-based approach where no geometric calibration is needed. Experiments confirm the effectiveness of our method where sequential shapes are reconstructed from a single image. Both quantitative evaluations and comparisons with recent techniques were also conducted.Comment: 9 pages, Published at the International Conference on Computer Vision (ICCV 2017

    Personalized Federated Learning with Multi-branch Architecture

    Full text link
    Federated learning (FL) is a decentralized machine learning technique that enables multiple clients to collaboratively train models without requiring clients to reveal their raw data to each other. Although traditional FL trains a single global model with average performance among clients, statistical data heterogeneity across clients has resulted in the development of personalized FL (PFL), which trains personalized models with good performance on each client's data. A key challenge with PFL is how to facilitate clients with similar data to collaborate more in a situation where each client has data from complex distribution and cannot determine one another's distribution. In this paper, we propose a new PFL method (pFedMB) using multi-branch architecture, which achieves personalization by splitting each layer of a neural network into multiple branches and assigning client-specific weights to each branch. We also design an aggregation method to improve the communication efficiency and the model performance, with which each branch is globally updated with weighted averaging by client-specific weights assigned to the branch. pFedMB is simple but effective in facilitating each client to share knowledge with similar clients by adjusting the weights assigned to each branch. We experimentally show that pFedMB performs better than the state-of-the-art PFL methods using the CIFAR10 and CIFAR100 datasets.Comment: Accepted by IJCNN 202

    Generalization of pixel-wise phase estimation by CNN and improvement of phase-unwrapping by MRF optimization for one-shot 3D scan

    Full text link
    Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc. One severe drawback of one-shot 3D scan is sparse reconstruction. In addition, since spatial pattern becomes complicated for the purpose of efficient embedding, it is easily affected by noise, which results in unstable decoding. To solve the problems, we propose a pixel-wise interpolation technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic. This is achieved by U-net which is pre-trained by CG with efficient data augmentation algorithm. In the paper, to further overcome the decoding instability, we propose a robust correspondence finding algorithm based on Markov random field (MRF) optimization. We also propose a shape refinement algorithm based on b-spline and Gaussian kernel interpolation using explicitly detected laser curves. Experiments are conducted to show the effectiveness of the proposed method using real data with strong noises and textures.Comment: MVA202

    標準接触球面への余次元2の接触埋め込みについて

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 坪井 俊, 東京大学教授 河野 俊丈, 東京大学教授 金井 雅彦, 東京大学教授 古田 幹雄, 東京大学教授 平地 健吾University of Tokyo(東京大学

    Predicting the treatment response of certolizumab for individual adult patients with rheumatoid arthritis: protocol for an individual participant data meta-analysis.

    Get PDF
    BACKGROUND A model that can predict treatment response for a patient with specific baseline characteristics would help decision-making in personalized medicine. The aim of the study is to develop such a model in the treatment of rheumatoid arthritis (RA) patients who receive certolizumab (CTZ) plus methotrexate (MTX) therapy, using individual participant data meta-analysis (IPD-MA). METHODS We will search Cochrane CENTRAL, PubMed, and Scopus as well as clinical trial registries, drug regulatory agency reports, and the pharmaceutical company websites from their inception onwards to obtain randomized controlled trials (RCTs) investigating CTZ plus MTX compared with MTX alone in treating RA. We will request the individual-level data of these trials from an independent platform (http://vivli.org). The primary outcome is efficacy defined as achieving either remission (based on ACR-EULAR Boolean or index-based remission definition) or low disease activity (based on either of the validated composite disease activity measures). The secondary outcomes include ACR50 (50% improvement based on ACR core set variables) and adverse events. We will use a two-stage approach to develop the prediction model. First, we will construct a risk model for the outcomes via logistic regression to estimate the baseline risk scores. We will include baseline demographic, clinical, and biochemical features as covariates for this model. Next, we will develop a meta-regression model for treatment effects, in which the stage 1 risk score will be used both as a prognostic factor and as an effect modifier. We will calculate the probability of having the outcome for a new patient based on the model, which will allow estimation of the absolute and relative treatment effect. We will use R for our analyses, except for the second stage which will be performed in a Bayesian setting using R2Jags. DISCUSSION This is a study protocol for developing a model to predict treatment response for RA patients receiving CTZ plus MTX in comparison with MTX alone, using a two-stage approach based on IPD-MA. The study will use a new modeling approach, which aims at retaining the statistical power. The model may help clinicians individualize treatment for particular patients. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number pending (ID#157595)

    Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson's Disease

    Get PDF
    Epidemiological studies demonstrated that pesticide exposure, such as rotenone and paraquat, increases the risk of Parkinson's disease (PD). Chronic systemic exposure to rotenone, a mitochondrial complex I inhibitor, could reproduce many features of PD. However, the adoption of the models is limiting because of variability in animal sensitivity and the inability of other investigators to consistently reproduce the PD neuropathology. In addition, most of rotenone models were produced in rats. Here, we tried to establish a high-reproducible rotenone model using C57BL/6J mice. The rotenone mouse model was produced by chronic systemic exposure to a low dose of rotenone (2.5 mg/kg/day) for 4 weeks by subcutaneous implantation of rotenone-filled osmotic mini pump. The rotenone-treated mice exhibited motor deficits assessed by open field, rotarod and cylinder test and gastrointestinal dysfunction. Rotenone treatment decreased the number of dopaminergic neuronal cells in the substantia nigra pars compacta (SNpc) and lesioned nerve terminal in the striatum. In addition, we observed significant reduction of cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) and the intestinal myenteric plexus. Moreover, alpha-synuclein was accumulated in neuronal soma in the SNpc, DMV and intestinal myenteric plexus in rotenone-treated mice. These data suggest that the low-dose rotenone mouse model could reproduce behavioral and central and peripheral neurodegenerative features of PD and be a useful model for investigation of PD pathogenesis
    corecore